#sfdep - working with simple feature dataframes. For point pattern analysis
#Global colocation quotient
pacman::p_load(sf, tidyverse, tmap, sfdep)In-class exercise 5
Importing packages
Importing data
studyArea <- st_read(dsn = 'data',
layer ="study_area") %>%
st_transform(crs = 3829)Reading layer `study_area' from data source
`C:\Study\Y3\S2\IS415\ELAbishek\IS415-GAA\in-class-exercise\wk5\data'
using driver `ESRI Shapefile'
Simple feature collection with 7 features and 7 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 121.4836 ymin: 25.00776 xmax: 121.592 ymax: 25.09288
Geodetic CRS: TWD97
stores <- st_read(dsn = "data",
layer = "stores")%>%
st_transform(crs = 3829)Reading layer `stores' from data source
`C:\Study\Y3\S2\IS415\ELAbishek\IS415-GAA\in-class-exercise\wk5\data'
using driver `ESRI Shapefile'
Simple feature collection with 1409 features and 4 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 121.4902 ymin: 25.01257 xmax: 121.5874 ymax: 25.08557
Geodetic CRS: TWD97
Visualize the layers
tmap_mode("view")
tm_shape(studyArea) +
tm_polygons() +
tm_shape(stores) +
tm_dots(col = "Name",
size = 0.01,
border.col = "black",
border.lwd = 0.5) +
tm_view(set.zoom.limits = c(12,16))Local Colocation Quotients (LCLQ)
nb <- include_self(
st_knn(st_geometry(stores),6) #6 points, so to avoid a 50-50 situation, we include self so that it is always uneven
)
wt <- st_kernel_weights(nb,
stores,
"gaussian",
adaptive = TRUE)
FamilyMart <- stores %>%
filter(Name == "Family Mart")
A <- FamilyMart$Name
SevenEleven <- stores %>%
filter(Name == "7-Eleven")
B <- SevenEleven$Name
#A- target, B- the neighbour we are checking for colocation
LCLQ <- local_colocation(A, B, nb, wt, 49)
LCLQ_stores <- cbind(stores, LCLQ)#Cannot do relational join because the two layers dont ahve unique identifier
tmap_mode("view")
tm_shape(studyArea) +
tm_polygons() +
tm_shape(LCLQ_stores) +
tm_dots(col="X7.Eleven",
size = 0.01,
border.col = "black",
border.lwd = 0.5) +
tm_view(set.zoom.limits = c(12, 16))tmap_mode("plot")Computing kernel weights
wt <- st_kernel_weights(nb,
stores,
"gaussian",
adaptive = TRUE)Preparing the vector list
FamilyMart <- stores %>%
filter(Name == "Family Mart")
A <- FamilyMart$NameSevenEleven <- stores %>%
filter(Name == "7-Eleven")
B <- SevenEleven$NameCompute LCLQ
LCLQ <- local_colocation(A, B, nb, wt, 49)Joining output table
LCLQ_stores <- cbind(stores, LCLQ)Plotting LCLQ values
tmap_mode("view")
tm_shape(studyArea) +
tm_polygons() +
tm_shape(LCLQ_stores)+
tm_dots(col = "X7.Eleven",
size = 0.01,
border.col = "black",
border.lwd = 0.5) +
tm_view(set.zoom.limits = c(12, 16))